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Artificial intelligence in molecular biology:

a review and assessment

C.J. RAWLINGS! anp J. P. FOX?

1 Biomedical Informatics Unit and ® Advanced Computation Laboratory, Imperial Cancer Research Fund, P.O. Box 123,

Lincoln’s Inn Fields, London WC2A4 3PX, UK.

SUMMARY

Over the past ten years, molecular biologists and computer scientists have experimented with various
computational methods developed in artificial intelligence (a1). Al research has yielded a number of
novel technologies, which are typified by an emphasis on symbolic (non-numerical) programming
methods aimed at problems which are not amenable to classical algorithmic solutions. Prominent
examples include knowledge-based and expert systems, qualitative simulation and artificial neural
networks and other automated learning techniques. These methods have been applied to problems in
data analysis, construction of advanced databases and modelling of biological systems. Practical results
are now being obtained, notably in the recognition of active genes in genomic sequences, the assembly of
physical and genetic maps and protein structure prediction. This paper outlines the principal methods,
surveys the findings to date, and identifies the promising trends and current limitations.

1. INTRODUCTION

Artificial intelligence (A1) and molecular biology are
emerging as a distinctive interdisciplinary subject,
with a rapidly growing research community (Hunter
1993; Hunter et al. 1993). In this paper we review
some of the more prominent recent developments and
consider a range of A1 techniques and applications. We
generally confine the discussion to areas where there
are sufficient results to draw some conclusions, if
provisional ones.

It is now generally accepted that modern molecular
biology research needs many different types of
software to support the management, analysis and
interpretation of data. It is therefore not surprising
that the inherent complexities of the subject would
attract Al practitioners and result in the application of
Al methods to molecular biological problems. The
motivation for many AI researchers is the hope that
their technologies can provide a fresh outlook on
many of the hard scientific problems that are facing
molecular biology today and that the result will be a
new generation of intelligent molecular biology
software systems.

A difficulty with the term ‘artificial intelligence’ is
that it means different things to different people. The
field is in fact developing on a number of fronts, not
all of which are of much immediate interest to
molecular biologists. Much Al research is aimed at
developing theories of animal and human reasoning,
planning, learning, vision, hearing and natural
language, and the field also has a strong tradition of
engineering and mathematics. For example, A1 has
acquired prominence because of its development of

Phil. Trans. R. Soc. Lond. B (1994) 344, 353363

certain novel technologies, like ‘expert systems’ and
‘neural networks’. Their value, as in other engineering
fields, is primarily that they seem to be capable of
many useful tasks. In contrast, other areas of A1 are
developing as a formal discipline. For instance, one
important range of developments in Al focuses on the
development of powerful theories of reasoning,
grounded in philosophy and mathematical logic. In
between these three extremes of natural science,
mathematics and engineering are other subfields of
Al which are concerned with developing new types of
computer language, developing theories of robotics
and other autonomous systems, and with more
philosophical but potentially important questions
about the nature of information, knowledge and
computation.

We have selected five mainstream Al research
themes where the software tools have matured
sufficiently to be put to practical use in the general
field of molecular biology. These themes are the
development of knowledge-based systems, the use of

symbolic (qualitative) as distinct from numerical
(quantitative) computing methods, the automatic
learning of new concepts from data (machine

learning), the automatic processing and understand-
ing of natural language and methods for searching for
plausible solutions to large, complex problems. These
technologies are being applied in the area of protein
structure to interpret NMR spectra for determining
three dimensional structure and to learn new protein
folding rules and apply them in protein structure
prediction. In the area of molecular genetics, they are
being used to create integrated knowledge bases with
encyclopaedic coverage of molecular genetics, to
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simulate biochemical metabolism and the life cycles of
viruses, to identify higher-order structures in nucleic
acid sequences, to learn new rules for recognizing
active genes in genomic sequence data and also to
build novel genetic map construction programs.

There is a great diversity among the different A1
techniques being applied to molecular biological
problems. Some clear themes and areas of success
are now emerging which we highlight in the final
section.

2. ADVANCED DATABASES AND
KNOWLEDGE BASES

An obvious feature of molecular biology is its capacity.
to generate prodigious quantities of data. Further-
more, the human genome project is making the
management and interpretation of molecular genetic
data an acute problem for modern biology. However,
notwithstanding the daunting scale of the problem,
the difficulties of mere storage and retrieval of
information are likely to be satisfactorily addressed
by advances in conventional computer and database
technology. The most important factors will probably
be the combined effects of the increasing performance/
cost ratio of computer hardware, improved software
technologies able to exploit parallel computer hard-
ware and advanced data networking.

What added benefits might a1 have to offer to users
of scientific data, particularly those in molecular
biology? The short answer is that where conventional
databases have been primarily concerned with
supporting efficient storage and retrieval, Al's ‘know-
ledge-based systems’ have emphasized support for
interpretation of the information stored in a database.

GENESIS (Friedland ¢t al. 1982) was the first
serious attempt to build an integrated knowledge base
genetic engineering system. It was intended for use in
laboratory data management and experiment plan-
ning. GENESIS provided a substantial database of
DNA sequence data, extended with documentation
and derived data (such as restriction maps). The
whole knowledge base was organized into chunks of
related information, or ‘frames’, representing natural
biological concepts and their interrelationships. For
example, a fragment of the GENEsIS knowledge base
dealing with genes is shown in figure 1. Each name in
this hierarchy refers to a frame, a data-structure
which defines the attributes which characterize each
class of genes (e.g. globin-genes). The details of

animal genes
protein-coding genes
contractile-protein genes
globin genes
heat-shock genes
histone genes
plant genes ... etc.
Figure 1. A short extract from the GENEsIs knowledge base
showing the hierarchical organization of frames representing
classes of biological entities. Detailed information, such as
the data on specific genes associated with a gene class are
stored in ‘instance frames’ at the bottom of the hierarchy.
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specific genes associated with a gene class are stored
in ‘instance frames’ at the bottom of the hierarchy.

Organizing a knowledge base as a frame hierarchy
is intuitively natural from a biologist’s point of view,
but it also offers a number of technical benefits as
well. The most important of these is that of automatic
‘inheritance’ of knowledge about concepts over
concept classes. The frame-based representation and
the inheritance mechanisms used are closely related to
those used in object-oriented database systems (Cattell
1991). Where frame-based systems differ is the use of
higher level programming languages such as LISP,
Prolog or special rule-based reasoning systems. The
GENESIS system was supplied with a rule-based
programming language, for example. This language,
GENGLISH, permitted the knowledge base designer to
attach data manipulation rules to particular concepts
in the hierarchy. Operators in these rules permitted
the user to simulate the activity of key enzymes used
as reagents in genetic engineering (see later).

These and other techniques have proved to have
lasting value in the development of molecular biology
applications of knowledge bases. For example,
Yoshida et al. (1992) are developing LucY, a ‘human
genome encyclopaedia’, which is intended to provide
a uniform structure for integrating a range of public
and private laboratory databases (currently focused
on chromosome 21) but extracts from several public
databases such as the Genome Data Base and
GenBank have been successfully integrated into the
knowledge base, together with over 40 genetic,
cytogenetic, restriction and long-range physical
maps. Like GENEsIS, the LUCY system organizes its
data using frame techniques and provides specialized
languages appropriate for the representation of
molecular biological data.

Unlike GENEsIs, Lucy does not have a special-
purpose inference language but a language called
Prolog (Clocksin & Mellish 1981). Prolog (for
Programming in Logic) is a language developed as a
result of A1 research on mathematical logic and is
widely used for logical reasoning and general
programming. Logic programming technology was
developed in Europe, and European workers were
quick to investigate its value as a knowledge
representation and knowledge base query language
(e.g. Lyall et al. 1984; Rawlings e al. 1985) and some
have argued that it has advantages over conventional
programming techniques for use in molecular biology
(e.g. Barton & Rawlings 1990). The Argonne
laboratories have also put considerable effort into
using logic programming techniques in developing
integrated knowledge bases to support research in
human (Hagstrom et al. 1992) and E. coli genetics
(Baehr et al. 1992). A number of studies have looked
at the combination of logic programming with frame
and object-based data representations. Gray et al.
(1990) apply this combination of techniques to
protein structure analysis, and conclude that the two
methods are complementary.

Other logic-based knowledge-based systems include
the GeneSys system (Overton e/ al. 1990) which
explores issues in the automation of biosequence
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analysis, notably with respect to the structure—
function relationship in gene expression and the
PAPAIN system (Clark ef al. 1990) which is designed
to automate the analysis of protein sequences with the
aim of providing assistance in protein structure
prediction.

3. QUALITATIVE MODELLING AND
SIMULATION

Closely associated with the methods for building
knowledge-based management systems are those for
building simulations of biological processes. Because
many aspects of molecular biology are not amenable
to rigorous mathematical treatment, qualitative
approaches for modelling biochemical processes have
been developed. The MOLGEN project (Stefik 1981,
Friedland & Iwasaki 1985) was one of the first
experiments in the qualitative simulation of molecular
biological processes. The motivation behind MOLGEN
was to plan genetic engineering experiments automati-
cally and in order to do this it was necessary to simulate
the activity of the reagents and processes of molecular
genetics, e.g. restriction endonucleases, DNA ligases,
transcription, translation, etc. The ideas of automated
experiment planning have also been developed by
Carhart et al. (1988) and Jiang et al. (1990).

In the MOLGEN-II project (Friedland & Kedes 1985)
the emphasis shifted to developing programs that
could (re)discover scientific hypotheses and in
particular the reasoning involved in the elucidation
of attenuation as a method of control of gene
expression. This research has required the develop-
ment of techniques for representing and reasoning
about biological processes and experimental techni-
ques. An important outcome of MOLGEN-II (Karp
1993) is thus a qualitative model and simulation of
gene expression in the trp operon. The approaches
and technologies developed to support qualitative
molecular biological simulations used in the MOLGEN
project have also influenced simulations of genetic
regulation in bacteriophage 1 (Meyers & Friedland
1984) and DNA metabolism (Brutlag et al. 1991). As
fundamental biological processes, gene regulation and
expression (Weld 1984; Koton 1985) have also been
studied in some detail and in some cases models have
also been developed of the life cycle of simple
organisms such as the lambda bacteriophage
(Meyers & Friedland 1984) and the human immu-
nodeficiency virus (Koile & Overton 1989).

Many people (e.g. Karp 1992) have observed that
for knowledge-based systems to make a significant
impact on molecular biology, they should have a basis
in the ‘common-sense biochemistry’ as taught to every
under-graduate biologist. The EcoCYC project (Karp
& Riley 1993) 1is proposing to do this in a
comprehensive way for the genetics and biochemistry
of the bacteria E. coli. Others are concentrating on
methods for representing the detailed aspects of
cellular metabolism, in particular Michael Mavro-
vouniotis and co-workers as reviewed in Mavro-
vouniotis  (19934) and further developed in
Mavrovouniotis (19934) and Kazic (1993).

Phil. Trans. R. Soc. Lond. B (1994)

4. MACHINE LEARNING

Ever since scientists began to collect and store large
collections of data on computers they have been
fascinated by the idea that it might be possible to
develop techniques for ‘discovering’ patterns in the
data that would be hard for them to find unaided.
The classical approach, of course, is for a scientist to
closely direct a computer to search for patterns in a
database, to confirm specific suspicions or hypotheses
by appropriate methods. But there is also a growing
body of work on techniques whereby the computer
searches for correlations and formulates hypotheses
without the guidance of a human investigator. This
work ranges from attempts to find statistical regu-
larities automatically (e.g. Blum 1982) to highly
ambitious projects aimed at showing that a computer
can formulate scientific conjectures and theories
without human intervention (e.g. Lenat 1983).

The value of unsupervized ‘discovery’ methods is
controversial. However, in a limited form, techniques
for automatically finding regularities in large collec-
tions of data are promising to be useful. In machine
learning the computer is presented with examples of
different data patterns of interest and it then searches
for colleéctions of features which will discriminate
between the different pattern categories or seeks to
identify generic features among them. A number of
methods have been developed, the most prominent of
which are symbolic induction and neural networks.
The former methods generate explicit rules of the form
if . .. then .. .’, whereas the latter use a quantitative
weighting technique. We shall concentrate on the
latter here, as Sternberg et al. discuss rule induction
methods in detail elsewhere in this volume.

Neural networks were developed in the 1950s by
researchers interested in modelling the brain mechan-
isms involved in perception. They developed artificial
networks in hardware which could learn to recognize
patterns, presented as sets of features, by progressively
increasing the numerical weight associated with
features which are typically present in specific
categories of pattern, and decreasing the weight
attached to features which are typically absent. Such
a network can be trained to distinguish the different
categories by providing feedback indicating whether
an example is or is not a member of a particular
category. Perceptrons, as the early networks were
called, subsequently fell out of favour because of
demonstrations by Minsky & Papert (1969) that they
could not learn to discriminate some important types
of pattern, although perceptron-like networks were
used by Stormo et al. (1982) to recognize translation
initiation sites. Recent technical advances, however,
have overcome enough of these difficulties that neural
network software can be useful in many practical
pattern recognition applications.

Among the first applications in molecular biology
was the prediction of the secondary structure of
globular proteins. Qian & Sejnowski (1988) trained
a network by presenting it with amino acid sequences
whose secondary structure is known, and tested its
ability to correctly classify new sequences which were
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non-homologous with the training set. The initial
successful recognition rate with randomly assigned
weights was at the chance level of 33% but during
training this rose to an average of 64.3% for the three
states, a performance level that was superior to other
methods available at the time. The reader is directed
to a number of recent reviews that cover the use of
artificial neural networks for predicting structure and
function in both protein and DNA sequences. These
include Hirst & Sternberg (1992) and Presnell &
Cohen (1993) as well as chapters by Steeg and
Holbrook et al. in Hunter (1993).

The use of neural networks to detect errors in
biological sequences was suggested by Brunak et al.
(1991). They trained a network to recognize mRNA
splicing signals in 33 human genes from the EMBL
data library, during which they noticed that some
sequences appeared to ‘disturb’ the learning because
the network weights did not stabilize on a specific
signal assignment. Subsequent investigation revealed
discrepancies from the original papers for three genes
due to misprints and other errors of interpretation. A
similar study of 241 sequences from GenBank
revealed nine new errors. Brunak et al. argue that
neural networks could be used as ‘computerized
proof readers’, or gatekeepers, to detect possible
errors before accepting data into a database.

A more recent development in the use of neural
networks in molecular biology is to combine conven-
tional and machine learning techniques. Mural et al.
(1992) have examined the use of neural networks in
finding protein coding regions in DNA sequences.
Computer-based recognition of DNA features can be
difficult; statistical analysis can help but in many cases
the consensus sequence is insufficient to specify the
feature of interest. They argued that results from
‘knowledge-free’ methods, i.e. those which simply use
the sequence (figure 24), are encouraging but the
networks are large (particularly for complex features
such as protein coding regions) and training requires
large amounts of supercomputer time. They therefore
take a ‘knowledge-based’ approach, in which they
preprocess the sequence statistically, to first identify
potentially meaningful biological signals (figure 24),
labelling it along its length with seven different
measures. These different labellings are then used as
input to the network, rather than the base sequence.
Using this method they located 90% (71/79) of exons
of more than 100 bases and correctly classified 96%
(16592/17576) of 100 base sequences coming from
coding/non-coding sequences. Of the 1113 test
windows classified as coding 92% were correct (8%
false positives). Applied to an anonymous 58 kb
sequence of human DNA in Huntington’s region the
method located a number of potential exons clustered
as to suggest several genes.

Craven & Shavlik (1993) have revised Mural’s
approach in order to interpret prokaryotic DNA
sequence data, specifically to locate coding regions in
genomic sequences and detect frameshift errors. They
compared the performance of a network using
different representations of the sequences (as bases,
codons and other features). They also compared the

Phil. Trans. R. Soc. Lond. B (1994)

(@) (b)

measure of coding
potenial

measure of coding
potenial

signal processing stage

measures of
non-randomness
Fickett testcode

—A——

...... AGTGATTT.. w.AAACATAGTGA...

sequence

Figure 2. Artificial neural networks can be used to recognize
coding regions in genomic sequence. (@) Early methods used
a ‘knowledge-free’ approach, but more recent approaches
(b) have used networks to learn the best combination of
different statistical or pattern-based methods developed for
gene identification (see text).

technique with conventional approaches, predicting
that neural networks should outperform simple
statistical methods because they do not make the
assumption that the statistics of neighbouring ele-
ments in the sequence are independent. They found
that the best conventional techniques yielded 87.2%
correct assignment of subsequences as coding/non-
coding. The best neural network resulted in 87.45%
correct assignment, but when statistical techniques
were used to define the features of coding regions the
neural network learned to make 89.15% correct
assignments.

Although the idea that computers can contribute to
the development of scientific theories is controversial,
Shavlik ef al. (1992) argue that it has some potential in
molecular biology. They propose a scheme whereby a
theory is expressed as a set of ‘if . . . then . . .” rules,
such as a theory which relates sequence data to
signals. These rules can be translated into an
equivalent network topology in software which can
be trained on examples in the usual way. The trained
network can then be translated back into a set of rules,
yielding a more refined theory. They did two
experiments using this scheme, in recognizing E. coli
promoter sequences, and compared the results with
other machine learning and conventional consensus
techniques. They found the method to be both
superior to other methods and, unlike normal neural
networks, the results are in the form of explicit rules
which are intelligible to biologists and are more
informative than a consensus sequence.

5. LINGUISTIC METHODS

The motivation behind linguistic approaches to
molecular sequence analysis is to understand the
structure of genetic sequences as languages. These
studies are predicated on the widely held assumption
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that genetic sequences are similar to natural
languages and that as written languages rely on the
sequence of letters (and punctuation) to convey
meaning, so genetic sequences carry biological mean-
ing (descriptions of structure and function) in the
linear order of bases or amino acids. A long term goal
of computational genetic linguists is to develop
accurate automatic methods to identify the biological
meaning of the features encoded in molecular
sequences.

The formal methods used to describe the syntax of
languages are grammars. The more complex the
language, the greater is the need for representational
flexibility in the grammar. David Searls (1993)
provides an excellent overview of language theory,
the different types of grammatical systems and the
classification of genetic grammars. The practical value
of formalizing a language as a grammar is that it
facilitates the construction of a program that can
parse sentences from that language. The most useful
outcome of a parser is the parse tree and figure 3
shows how a genetic ‘sentence’ can be decomposed
into other genetic ‘phrases’ or elements described by a
genetic grammar.

The simplest languages can be described by ‘regular
expressions’. Although simple, many genetic sequence
patterns (motifs) associated with biological functions
can be expressed using regular expressions. Never-
theless, most sequence pattern matching programs
(e.g. QUEST, Abarbanel et al. 1984; ARIADNE, Lathrop
et al. 1987) use a pattern language that has been
extended beyond pure regular expressions in order to
accommodate some of the less regular features of
biological sequences. Therefore, although extended
regular languages can capture many of the sequen-
tially local features in genetic sequence motifs (e.g.

gene

PROSITE, Bairoch 1991) and have resulted in some
important practical programs, many aspects of nucleic
acid and protein structure and function are not
encoded in local sequence motifs, but are a conse-
quence of local spatial interactions mediated by long
range and higher-order sequence relationships.

To extend the range of biological meanings that can
be recognized by linguistic methods, it is necessary to
consider more complex languages. In a study of the
linguistic classification of genetic grammars (Searls
1993) the starting point is a definite clause grammar
(DcG) for representing genetic structures. DCGs have
a close association with the Horn Clause Logic
employed by the logic programming language
Prolog (Pereira & Warren 1980) and most Prolog
systems are able to interpret and transform a DCG into
an executable Prolog program which can be used as a
top-down parser for the language described by the
DCG.

Prolog support for pcGs is made flexible by the
expedient of allowing grammar rules to be augmented
with native Prolog code. In what Searls names a
string variable grammar (svG) further extensions to
the DCG take advantage of the logic programming
paradigm to provide features necessary to describe
higher-order interactions among genetic sequences
and give SVG properties necessary to describe some of
the context-sensitive features of nucleic acids (Searls &
Liebowitz 1990) such as nonlinear features found in
RNA pseudoknots and other secondary structures
formed as a result of internal base pairing.

A practical demonstration of the use of these
techniques is the processing of gene structure
information incorporated in the GenBank database.
In a paper in which they use a grammatical model of
eukaryotic gene structure and in which they focus on

upstream primary_transcript downstream
cat- cap- . L.
box sitg translated _region termination
\ polyA-
site
tata- met- stop.
box codon codon
exon mtron exon mtron exon
donor donor
i acceptor . acceptor
«+.CCAAT...AATAA...AC...ATG...CGTCACTAGC. . .GTAAG. . .CATAG. . . TCCTTTGGAGAT. . .GTGAG. . .AACAG. . GTTCACCCCTG. . .TGA. . .AATAAA

Figure 3. A schematic representation of a parse tree for a gene grammar showing how the parser breaks down the structure
into component parts. Adapted with permission from Searls (1993).

Phil. Trans. R. Soc. Lond. B (1994)
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globin genes, Aaronson et al. (1993) were able to
reveal a significant number of errors in the database.
These included a small number of incorrectly specified
features, but more significantly, a larger number of
genetic elements that were missing completely from
the GenBank feature table. By exploiting the gene
grammar structure and the ability to reason by
analogy among a-globin sequences with a high
degree of sequence homology, it was possible to
propose the existence of 30% more introns and 40%
more exons than were listed in the feature tables. As
well as providing a new method for data quality
control in GenBank, the linguistic approach suggests a
possible method for dealing with the important
problem of consistency and completeness of the
GenBank feature tables: a particular issue for older
entries.

Nucleotide and amino acid sequence databases are
important primary data resources, but higher order
databases - such as catalogues of conserved sequence
motifs with known biological properties — are becom-
ing increasingly important. Perhaps the most well
known protein sequence motif collection is the PROSITE
database (Bairoch 1991). In PROSITE, and other
similar databases, extended regular expressions are
used to represent the sites and sequence patterns. The
coverage of the pattern description language to all
the required patterns is an important factor in the
usefulness of the database and affects the potential for
the database to grow to cover more sophisticated (i.e.
long-range) patterns as they are discovered.

In recent releases of PROSITE there have been a
number of patterns that cannot be completely
described by the PROSITE pattern language. Helgeson
& Sibbald (1993) have addressed these problems
using a formal linguistic approach and have deve-
loped the pALM pattern language. PALM has many
features in common with an svG but is focused on the
requirements of representing protein sequence pat-
terns: in particular frequentistic patterns using an
operator which counts occurrences of particular
patterns in a sequence segment.

6. CONSTRAINT-BASED SYSTEMS

Many problems of interpreting data from molecular
biology experiments have combinatorial complexity
(or worse) and computationally efficient methods are
important if competing interpretations are to be
evaluated in reasonable time. It can also be argued
that many aspects of scientific reasoning can be
naturally characterized as the search for consistent
interpretations among data and the hypotheses that
constrain the possible solutions. Constraint-based
systems provide a solution to both these considera-
tions.

The constraint-based approach represents the
dependencies among all the objects in a problem as
constraints and uses a problem solver that will ‘prune’
illegal solutions and their consequents (constraint
propagation) when a constraint is violated (Kumar
1992).

The first ever example of an Al application in the

Phil. Trans. R. Soc. Lond. B (1994)

molecular sciences, the DENDRAL system for interpret-
ing mass spectrometer data (Lindsay et a/. 1980) used
a ‘generate and test’ approach, which can be
considered as the most straightforward constraint-
based method. The determination of protein structure
from nuclear magnetic resonance (NMR) spectra has
also been addressed using constraint-based problem
solving techniques. These and other Al approaches to
protein structure determination from NMR spectra are
reviewed in Edwards et al. (1993).

RNA structure prediction is another problem with
combinatorial complexity that has been the subject of
constraint-based approaches. In Heuze (1989) a
constraint-based implementation of an established
combinatorial method for predicting RNA secondary
structure (Gouy 1989) uses parallel constraint logic
programming (see later). Major et al. (1991) use a
hybrid approach in their Mc-syM system for predicting
the three-dimensional structure of RNA. Mmc-sym
combines the use of a symbolic programming
language (the functional language Miranda) to
implement a constraint satisfaction algorithm which
prepares a partial model of the RNA structure for a
numerical energy minimization package (CHARMMm)
which then computes the detailed energetic and
conformational constraints on RNA folding.

Protein topology prediction, i.e. hypothesizing the
most plausible spatial organization of secondary
structure elements has a known combinatorial com-
plexity (figure 4) for all-B and a/f proteins (Clark et
al. 1991). By constructing this problem as a constraint
satisfaction problem and using protein folding rules as
constraints, Glark et al. were able to test the accuracy
and coverage of a number of protein folding rules
published in the scientific literature. This was possible
because the representation of constraints and the
query language for their database of protein topolo-

®)
no. of strands 2 6 10
no. of topologies 3 87480 3.57 x 1010

Figure 4. (a) The prediction of protein topology in proteins
containing all B-sheet or alternating o/f structures involves
determining the most plausible order and orientation for the
B-strands (arrows) in the sheet. This problem has
combinatorial complexity (b) with the number of possible
topologies (#) rising with the number of B-strands (n)
according to the function: ¢ = n!(3n — 1)/2.
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gical structures (Rawlings et al. 1985) were rules
written in the Prolog language.

More recently, by analysis of a protein topology
database and the use of inductive learning methods
(see Sternberg et al., this symposium), Clark et al.
(1993) have extended the number of constraints on
protein folding in o/f proteins and re-implemented
their method in the parallel constraint logic program-
ming (cLp) system, ElipSys. CLP is a recent
development in Al languages, extending the features
of logic programming languages, such as Prolog, with
special purpose problem solving techniques from
operations research and algebraic constraint propa-
gation (Van Hentenryk 1991). Clark et al. (1993)
demonstrated that cLp is very well suited to program-
ming these types of problems, both from the point of
view of providing a concise and comprehensible
representation language, and from that of computa-
tional efficiency. They showed that they could achieve
considerable performance gains (approximately 60-
fold) over the original Prolog implementation.
Furthermore, because the ElipSys system is also a
parallel logic language, it was possible to further
increase performance on a parallel computer system as
an almost linear function of the number of the
processing elements available.

A major problem in the use of a logic representation
of protein folding rules is providing a means to deal
with uncertain or partial constraints. Using in-built
optimization operators in the ElipSys system Clark
et al. (1993) developed an uncertainty management
scheme using a scoring scheme which uses the number
of times a constraint (rule) was found to be true (or
false) in the protein topology database. By using this
scheme, the most plausible topological structure(s)
were those that violated the fewest or weakest
constraints.

Protein topology prediction is a good example of
knowledge-intensive constraint satisfaction where
there is a relatively large number of high level
constraints that can be used to prune the hypothesis
space. At the other extreme are data-intensive
problems where there are few general rules but
many individual constraints coming from experimen-
tal data. The assembly of ordered maps of genetic
markers from measures of distance between the
markers would generally be characterized as data-
intensive. The assembly of restriction maps from the
size of fragments from single and double restriction
endonuclease digests of DNA was identified early on
as amenable to Al techniques and in particular
constraint-based search (Stefik 1978, 1981).

In the crror program (Letovsky & Berlyn 1992)
the construction of a genetic linkage map is dealt with
as a constraint satisfaction problem. All the order
information is represented as constraints and CPROP
uses rules for combining local or partially ordered
maps into larger maps. As regions are combined, new
distance constraints are created and a constraint
propagation phase is initiated to ensure that the
derived information is kept consistent.

In recent work by Doursenot et al. (1993), the
ElipSys parallel cLp system was used to program a
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constraint-based approach to assembling long-range
physical genetic maps from hybridization fingerprint-
ing methods (Lehrach et al. 1990). Their cME program
combines heuristic data reduction methods and
constraint satisfaction to derive the optimal ordering
of DNA markers. By using cME, Doursenot et al. were
able to show the power of introducing different
constraints to prune the hypothesis space and reduce
program execution times. They also showed that cME
was able to build maps that were as good (by the same
criteria) as those generated originally (Mott ef al.
1993). Furthermore it could be demonstrated, for the
first time, that for the given data the original map was
optimal.

7. DISCUSSION AND ASSESSMENT

In the ecarly days of applied Al in molecular biology
(and many other areas), there was great optimism
that the leverage provided by a1 technology would
overcome some of the practical difficulties of using
complex, and sometimes unwieldy Al programming
environments. Furthermore, there was a general belief
that the development of cost-effective symbolic
computing hardware that could efficiently run A1
programs written in languages such as Lisp and
Prolog would ensure that such systems would
eventually become widely accepted. For many
reasons, however, this was not what happened and
increasingly the applied Al community has become
more pragmatic in its approach, so that the
emergence of hybrids of Al and conventional software
techniques are now common. This trend is evident in
AT applications in molecular biology and perhaps most
clearly seen in the area of advanced knowledge-based
systems.

One of the developments enabling Al methods to be
applied to molecular biology problems is the
convergence of Al and database technologies, which
is leading to a new class of databases called ‘deductive
databases’. These systems have the ability to manage
large-scale data together with the ‘intelligence’ arising
from logical reasoning and other inference capabil-
ities. These deductive and other knowledge-based
systems are being made the basis for building what are
often referred to as encyclopaedic systems (e.g. Karp
1992; Yoshida et al. 1992) that bring together not just
the data from a wide variety of sources into a common
framework, but also simulations of biochemical
processes, experiment planning, data interpretation
and other functions. If these projects are successful,
then they will greatly ease the problems encountered
by many scientists when trying to assemble informa-
tion from the many different molecular biology and
genetics databases.

A major difficulty in earlier large-scale knowledge-
based projects such as GENEsIS (Friedland & Kedes
1985) was the huge amount of biological detail that
had to be encoded before significant results were
possible. The rapidly changing nature of a1 software
technology and the absence of a consensus on
programming environments has also meant that
much work has had to be repeated. A challenge to
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the new projects involved in this research will be to
ensure that as well as addressing the scientific issues
(computer science and biological science), the
necessary procedures are put in place to enable these
digital encyclopaedia to be used by any computa-
tional biologist: not just those that are prepared to
program in Lisp or Prolog.

Early applications of a1 in molecular biology drew
heavily on the capabilities of the Lisp programming
language. Although Lisp is still popular in many
centres, particularly in the U.S.A.; there is a trend
developing for the adoption of logic programming
languages, such as Prolog, for molecular biological
applications. One advantage that Prolog brings is its
close relationship with a relational style of program-
ming and the facility with which it is possible to link
to relational database systems. The Prolog language
also provides the structures necessary to build higher-
level representations such as object-oriented (Gray et
al. 1990) and frame-based representations (e.g. Over-
ton et al. 1990; Yoshida et al. 1992). The most active
users of Prolog are principally the knowledge-based
systems development community (e.g. Clark et al.
1990; Hagstrom et al. 1992) but Prolog is also the
language of choice for genetic grammar and linguistics
research (Searls 1993) where the close relationship
between definite clause grammars and Prolog is a
clear advantage.

The appealing notion that computer programs can
be built that can hypothesize new relationships (e.g.
rules for predicting protein structure from amino acid
sequence) by learning them directly from molecular
biological data has yielded mixed results. The most
popular and successful approach for machine learning
of molecular biological concepts has been artificial
neural networks. However, not all commentators are
wholeheartedly optimistic about their future (e.g.
Hirst & Sternberg 1992). One problem that this
research area has helped to bring into focus, and that
pervades computational molecular biology is selecting
the correct training and test data sets and having
accepted criteria for success. There is an urgent need
for scientists in computational molecular biology to
establish a well-documented and easily accessible set
of reference data that can be used to compare
competing methodologies.

Machine learning research in molecular biology has
shown two further areas where convergence between
technologies are yielding clear results. In the first,
Shavlik et al. (1992) have developed a method for
automatically extracting a rule-based ‘comprehen-
sible’ description of what has been learned from a
trained artificial neural network. This means that in
future, the rules ‘learned’ by a neural network will be
more easy to both understand and incorporate into
knowledge-based systems. The second example of
hybrid or converging technologies is the development
of combinations of signal processing (e.g. statistical
methods) and machine learning techniques. This is
how the GRAIL system (Mural et al. 1992) predicts
protein coding regions in genomic DNA and using a
similar approach Craven & Shavlik (1993) showed
that the neural network learned how to combine the
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results from the best pattern-based and statistical gene
recognition programs to achieve a better result than
any of them did individually.

An important goal for researchers who cross the
boundaries of machine learning and natural language
understanding is to be able to learn a grammar from
examples of the language. Clearly, the possibility of
learning detailed genetic grammars directly from
molecular sequences must be a very long-term goal.
However, the use of a combination of machine
learning and genetic grammars to identify undocu-
mented genetic elements in the GenBank database
(Aaronson et al. 1993) is an important result for
grammar induction techniques that complements the
continued developments of more sophisticated gram-
mars for representing biological structure and func-
tion in sequence data.

For a1 techniques to be fully integrated into
molecular biology computing, it is important that
they be able to build systems that are efficient enough
to reason with raw data and assist directly with
interpretation of scientific data. Constraint-based
systems have many advantages when it comes to
solving large scale application problems and an
important recent development in constraint handling
technology has been the convergence of logic
programming, operations research and other pro-
blem solving techniques in constraint logic program-
ming languages. Several recent examples of the
application of cLp, including protein topology predic-
tion (Clark et al. 1993), prediction of RNA structure
(Heuze 1989) and the assembly of large-scale physical
genetic maps (Doursenot et al. 1993), have demon-
strated that this technology is sufficiently general and
powerful to address a wide range of problems
efficiently. Ongoing developments in cLP technology
will link cLp languages with deductive databases to
produce constrained deductive databases which
should be very well suited to many more problems
in molecular biology.

To conclude, this paper has drawn on a selection of
recent research and publications to demonstrate the
breadth of techniques and problems that have been
addressed in A1 and molecular biology. There are now
signs that, through the adoption of an increasingly
pragmatic approach and the integration with more
traditional software technologies, some important
practical results are being achieved and that Ar is
now making a contribution to computational mole-
cular biology.

We thank Dominic Clark, Catherine Hearne and Simon
Parsons for their comments on earlier drafts of this paper.
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Discussion

E. A. THomPsON (Department of Statistics, University of
Washington, U.S.A.). A statistician might call ‘con-
straint based-problem solving’, ‘data-based model
fitting’, and there are probability network methods
for finding solutions to optimization problems on
complex spaces. In particular, Markov chain Monte
Carlo methods applied on these probability networks
can explore the very large potential solution spaces.
Does Dr Rawlings have any comment on the
relationship of these probabilistic methods to the
deterministic optimization algorithms and/or neural
nets?

C. J. RawLiNgs. There are several reasons why the cLp
and other A1 approaches are considered useful. Firstly,
the a1 and logic programming framework allows
information in the broader sense to be employed in
problem solving and thus a close coupling can be
achieved between all relevant information, not just
that part where quantitative data has been collected.
Secondly, there are many problems, in molecular
biology and elsewhere, where there is insufficient data
for a statistical or mathematical analysis to be
appropriate. Where such detailed data exists, there
is a clear case that statistical methods should be
employed. The cLP and Al approaches do not exclude
mathematical and statistical approaches and there is
an increasing trend towards building hybrid and
cooperative systems that exploit the flexibility of ar
programming environments with the precision of
statistical and numerical analyses.

Deterministic information represented in Al pro-
grams is often used to make the problem-solving
process more comprehensible to the user (an impor-
tant factor for many applications where safety is a
prime concern) and to help guide the search process
and achieve an efficient implementation. It is not
clear how such strategic and procedural knowledge
could be usefully exploited by probabilistic methods.
On the other hand, the flexible optimization methods
embodied in cLP languages can subsume statistical
methods or could be programmed to exploit a
statistical approach in favour of other optimization
methods such as branch and bound search. The
approach we have adopted is to complement non-
deterministic optimization techniques (e.g. simulated
annealing) with deterministic methods embodied in
cLp and we believe that this is a practical and
productive way of building molecular biology soft-
ware.

B. RoBsoN (Proteus International ple, Macclesfield, U.K.).
Although I am very much an artificial intelligence
enthusiast, I am concerned that in many applications
to molecular biology, it is a question of ‘new lamps for
old’. Many techniques already exist which are often
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almost as good, occasionally better, and widely
available. Almost all the rules in the PROSITE
database, for example, can be coded (if sometimes
less elegantly) using the ‘regular expression’ system
widely available in Unix systems. Complex grammar
systems are not always essential, even I suspect for
abstract descriptions of the genome. Similarly, genetic
algorithm approaches are in almost all respects
comparable with the simplex method of Relder and
Mead, at least for global searching as applied by us.
Although I believe that in artificial intelligence the
Emperor’s New Clothes are really there, they are often,
I suspect, old clothes cleaned up.

C. J. Rawrings. The scope of this question is very
broad and there are several aspects that require an
answer. The first is simply that there are many
equally legitimate approaches to software develop-
ment for research purposes, and each makes a
distinctive contribution. The first approach, which
could be categorized as being bottom-up, is that
typified by much contemporary molecular biology
software. A specialist employs a traditional program-
ming language (e.g. Fortran or C) to painstakingly
hand craft a program that solves a particular
problem. Such a program can make a significant
contribution to science, but its range of applications is
generally narrow. The Ar approach takes a more top-
down approach which exploits general problem-
solving methods (perhaps developed for an entirely
different class of applications) and applies them to
new problems. From the perspective of a scientific
programmer who perhaps only considers the initial
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scientific result to be important, this could appear to
be a re-invention.

Those of us that espouse A1 methods are motivated
by some of the other advantages that high-level
programming environments bring, such as the
possibility of re-using knowledge and information,
generating solutions that can be expressed in terms
that are comprehensible to the user (such as in rule-
based expert systems) and the possibility that if a
generic solution can be found, related problems can
be solved without extensive re-programming. Further-
more, understanding a particular problem as an
instance of a more general class has other advantages
since the theoretical or computational framework
developed for the general problem can sometimes
provide new scientific insights for the specific one.

Contrary to what is implied in the question, the
application of methods from natural language and
grammars to the recognition of sequence motifs is a good
example of the advantages of taking a broader view.
Although it is true that Unix regular expressions can
code some of the PROSITE patterns, a significant and
increasing number cannot. The research into more
advanced grammars to represent complex patterns and
to build parsers that can recognize them is attempting to
anticipate increasing problems in this area. Further-
more, because the grammatical systems are so general
the same family of grammars can also be made to
recognize much more complex genetic structures (e.g.
RNA pseudoknots) and be re-used in projects that are
investigating the use of machine learning techniques in
DNA sequence analysis.
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